Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38747285

RESUMEN

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Asunto(s)
Fibroblastos , Fibrosis , Factor de Crecimiento Transformador beta , Proteína Wnt-5a , Quinasas Asociadas a rho , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animales , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Ratones , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/genética , Ratones Noqueados , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Sistema de Señalización de MAP Quinasas , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transducción de Señal , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/genética
2.
Nat Commun ; 14(1): 7660, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996412

RESUMEN

Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Animales , Humanos , Trypanosoma brucei brucei/genética , Piel/parasitología , Moscas Tse-Tse/parasitología , Mamíferos
3.
Adv Healthc Mater ; 12(30): e2301131, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660290

RESUMEN

Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.


Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Piel , Titanio , Neovascularización Patológica , Propiedades de Superficie
4.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555855

RESUMEN

Chronic wounds exhibit elevated levels of inflammatory cytokines, resulting in the release of proteolytic enzymes which delay wound-healing processes. In recent years, rifampicin has gained significant attention in the treatment of chronic wounds due to an interesting combination of antibacterial and anti-inflammatory effects. Unfortunately, rifampicin is sensitive to hydrolysis and oxidation. As a result, no topical drug product for wound-healing applications has been approved. To address this medical need two nanostructured hydrogel formulations of rifampicin were developed. The liposomal vesicles were embedded into hydroxypropyl methylcellulose (HPMC) gel or a combination of hyaluronic acid and marine collagen. To protect rifampicin from degradation in aqueous environments, a freeze-drying method was developed. Before freeze-drying, two well-defined hydrogel preparations were obtained. After freeze-drying, the visual appearance, chemical stability, residual moisture content, and redispersion time of both preparations were within acceptable limits. However, the morphological characterization revealed an increase in the vesicle size for collagen-hyaluronic acid hydrogel. This was confirmed by subsequent release studies. Interactions of marine collagen with phosphatidylcholine were held responsible for this effect. The HPMC hydrogel formulation remained stable over 6 months of storage. Moving forward, this product fulfills all criteria to be evaluated in preclinical and clinical studies.


Asunto(s)
Hidrogeles , Rifampin , Rifampin/farmacología , Hidrogeles/química , Ácido Hialurónico/química , Cicatrización de Heridas , Colágeno/metabolismo , Desarrollo de Medicamentos
5.
Biomedicines ; 10(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428530

RESUMEN

The host defense derived peptide was assessed in different model systems with increasing complexity employing the highly aggressive NRAS mutated melanoma metastases cell line MUG-Mel2. Amongst others, fluorescence microscopy and spectroscopy, as well as cell death studies were applied for liposomal, 2D and 3D in vitro models including tumor spheroids without or within skin models and in vivo mouse xenografts. Summarized, MUG-Mel2 cells were shown to significantly expose the negatively charged lipid phosphatidylserine on their plasma membranes, showing they are successfully targeted by RDP22. The peptide was able to induce cell death in MUG-Mel2 2D and 3D cultures, where it was able to kill tumor cells even inside the core of tumor spheroids or inside a melanoma organotypic model. In vitro studies indicated cell death by apoptosis upon peptide treatment with an LC50 of 8.5 µM and seven-fold specificity for the melanoma cell line MUG-Mel2 over normal dermal fibroblasts. In vivo studies in mice xenografts revealed effective tumor regression upon intratumoral peptide injection, indicated by the strong clearance of pigmented tumor cells and tremendous reduction in tumor size and proliferation, which was determined histologically. The peptide RDP22 has clearly shown high potential against the melanoma cell line MUG-Mel2 in vitro and in vivo.

6.
Sci Rep ; 12(1): 16269, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175453

RESUMEN

Malignant melanoma is among the tumor entities with the highest increase of incidence worldwide. To elucidate melanoma progression and develop new effective therapies, rodent models are commonly used. While these do not adequately reflect human physiology, two-dimensional cell cultures lack crucial elements of the tumor microenvironment. To address this shortcoming, we have developed a melanoma skin equivalent based on an open-source epidermal model. Melanoma cell lines with different driver mutations were incorporated into these models forming distinguishable tumor aggregates within a stratified epidermis. Although barrier properties of the skin equivalents were not affected by incorporation of melanoma cells, their presence resulted in a higher metabolic activity indicated by an increased glucose consumption. Furthermore, we re-isolated single cells from the models to characterize the proliferation state within the respective model. The applicability of our model for tumor therapeutics was demonstrated by treatment with a commonly used v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor vemurafenib. This selective BRAF inhibitor successfully reduced tumor growth in the models harboring BRAF-mutated melanoma cells. Hence, our model is a promising tool to investigate melanoma development and as a preclinical model for drug discovery.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Epidermis , Glucosa , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Microambiente Tumoral , Vemurafenib/farmacología , Melanoma Cutáneo Maligno
7.
Ophthalmologie ; 119(9): 891-901, 2022 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-35925345

RESUMEN

In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).


Asunto(s)
Quemaduras Químicas , Epitelio Corneal , Quemaduras Químicas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Córnea , Humanos , Medicina Regenerativa
8.
Biomedicines ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35740308

RESUMEN

A balanced and moist wound environment and surface increases the effect of various growth factors, cytokines, and chemokines, stimulating cell growth and wound healing. Considering this fact, we tested in vitro and in vivo water evaporation rates from the cellulose dressing epicitehydro when combined with different secondary dressings as well as the resulting wound healing efficacy in a porcine donor site model. The aim of this study was to evaluate how the different rates of water evaporation affected wound healing efficacy. To this end, epicitehydro primary dressing, in combination with different secondary dressing materials (cotton gauze, JELONET◊, AQUACEL® Extra ™, and OPSITE◊ Flexifix), was placed on 3 × 3 cm-sized dermatome wounds with a depth of 1.2 mm on the flanks of domestic pigs. The healing process was analyzed histologically and quantified by morphometry. High water evaporation rates by using the correct secondary dressing, such as cotton gauze, favored a better re-epithelialization in comparison with the low water evaporation resulting from an occlusive secondary dressing, which favored the formation of a new and intact dermal tissue that nearly fully replaced all the dermis that was removed during wounding. This newly available evidence may be of great benefit to clinical wound management.

9.
Appl Opt ; 61(32): 9616-9624, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36606902

RESUMEN

We present the results of the automated post-processing of Mueller microscopy images of skin tissue models with a new fast version of the algorithm of density-based spatial clustering of applications with noise (FastDBSCAN) and discuss the advantages of its implementation for digital histology of tissue. We demonstrate that using the FastDBSCAN algorithm, one can produce the diagnostic segmentation of high resolution images of tissue by several orders of magnitude faster and with high accuracy (>97%) compared to the original version of the algorithm.


Asunto(s)
Algoritmos , Microscopía , Piel/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
10.
Adv Mater ; 34(10): e2106780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933407

RESUMEN

The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Tejido Conectivo , Matriz Extracelular/química , Piel , Andamios del Tejido/química
11.
Biomedicines ; 9(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34572338

RESUMEN

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1ß, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.

12.
Sci Rep ; 11(1): 7070, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782484

RESUMEN

The replacement of animal models for investigation of inflammation and wound healing has been advancing by means of in vitro skin equivalents with increasing levels of complexity. However, the current in vitro skin models still have a limited pre-clinical relevance due to their lack of immune cells. So far, few steps have been made towards the incorporation of immune cells into in vitro skin and the requirements for immunocompetent co-cultures remain unexplored. To establish suitable conditions for incorporating macrophages into skin models, we evaluated the effects of different media on primary keratinocytes, fibroblasts and macrophages. Skin maturation was affected by culture in macrophage medium, while macrophages showed reduced viability, altered cell morphology and decreased response to pro- and anti-inflammatory stimuli in skin differentiation media, both in 2D and 3D. The results indicate that immunocompetent skin models have specific, complex requirements for supporting an accurate detection of immune responses, which point at the identification of a suitable culture medium as a crucial pre-requisite for the development of physiologically relevant models.


Asunto(s)
Macrófagos/fisiología , Supervivencia Celular , Medios de Cultivo , Técnicas In Vitro , Macrófagos/citología , Macrófagos/inmunología
13.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33789089

RESUMEN

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Asunto(s)
Cromatina/inmunología , Linfocitos T Reguladores/inmunología , Cicatrización de Heridas/inmunología , Adulto , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Diferenciación Celular/inmunología , Línea Celular , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/inmunología , Células HaCaT , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores CCR8/inmunología , Células T Auxiliares Foliculares/inmunología
14.
PLoS One ; 15(11): e0242615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253240

RESUMEN

3D printing is a rapidly evolving field for biological (bioprinting) and non-biological applications. Due to a high degree of freedom for geometrical parameters in 3D printing, prototype printing of bioreactors is a promising approach in the field of Tissue Engineering. The variety of printers, materials, printing parameters and device settings is difficult to overview both for beginners as well as for most professionals. In order to address this problem, we designed a guidance including test bodies to elucidate the real printing performance for a given printer system. Therefore, performance parameters such as accuracy or mechanical stability of the test bodies are systematically analysed. Moreover, post processing steps such as sterilisation or cleaning are considered in the test procedure. The guidance presented here is also applicable to optimise the printer settings for a given printer device. As proof of concept, we compared fused filament fabrication, stereolithography and selective laser sintering as the three most used printing methods. We determined fused filament fabrication printing as the most economical solution, while stereolithography is most accurate and features the highest surface quality. Finally, we tested the applicability of our guidance by identifying a printer solution to manufacture a complex bioreactor for a perfused tissue construct. Due to its design, the manufacture via subtractive mechanical methods would be 21-fold more expensive than additive manufacturing and therefore, would result in three times the number of parts to be assembled subsequently. Using this bioreactor we showed a successful 14-day-culture of a biofabricated collagen-based tissue construct containing human dermal fibroblasts as the stromal part and a perfusable central channel with human microvascular endothelial cells. Our study indicates how the full potential of biofabrication can be exploited, as most printed tissues exhibit individual shapes and require storage under physiological conditions, after the bioprinting process.


Asunto(s)
Ciencias Bioconductuales , Reactores Biológicos , Células Endoteliales , Fibroblastos , Impresión Tridimensional , Ingeniería de Tejidos , Técnicas de Cultivo de Célula , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino
15.
Skin Pharmacol Physiol ; 33(4): 189-197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32683369

RESUMEN

INTRODUCTION: An accelerated healing of superficial wounds was demonstrated in clinical trials with a topical comfrey preparation (Symphytum × uplandicum Nyman). The effect has previously not been examined in skin models. METHODS: An established in vitro model of epidermal cells with the typical strata was used for the observation of effects of applied substances on skin regeneration. Damage corresponding to a typical abrasion was created on day 1 by punching an opening into the epidermal fine structure down to the stratum basale. Samples were either untreated (controls) or exposed to comfrey cream on days 2, 3, 5, and 6. Tissue samples were taken for light and electron microscopy on days 1, 4, and 7. RESULTS AND CONCLUSIONS: Application of comfrey cream led to a quicker regeneration of skin cells and to an earlier differentiation of the cells towards a normal fine structure with a visible distinction of epidermal strata, keratin, and corneocyte formation within 4-7 days. The study covered the early days of skin regeneration and confirms the benefits observed in published clinical trials and non-interventional studies in patients with abrasions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Consuelda , Epidermis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Microscopía Electrónica de Transmisión , Extractos Vegetales/farmacología , Repitelización/efectos de los fármacos , Administración Cutánea , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Preescolar , Técnicas de Cocultivo , Consuelda/química , Epidermis/ultraestructura , Humanos , Queratinocitos/ultraestructura , Masculino , Extractos Vegetales/aislamiento & purificación , Crema para la Piel , Factores de Tiempo
16.
ALTEX ; 37(3): 429-440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32302003

RESUMEN

With cellular products being on the front run there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells finally allowing to seed these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. Afterwards, we were able to induce inflammation-based tissue damage by pre-stimulated mismatched allogeneic lymphocytes and/or inflammatory cytokine containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. The effects could be prevented by the addition of immunosuppressants to the models. Consequently, these models would harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. This would also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells which would otherwise be limited to animal models. Thus, the current test platform developed with the limitation given that no professional APC are in place could highly reduce animal testing for investigation of novel immune therapies.


Asunto(s)
Alternativas a las Pruebas en Animales , Enfermedad Injerto contra Huésped/patología , Inmunosupresores/uso terapéutico , Modelos Biológicos , Piel/patología , Humanos , Linfocitos/fisiología , Andamios del Tejido
17.
J Biomed Opt ; 25(1): 1-11, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31933331

RESUMEN

Significance: Definitive diagnostics of many diseases is based on the histological analysis of thin tissue cuts with optical white light microscopy. Extra information on tissue structural properties obtained with polarized light would help the pathologist to improve the accuracy of his diagnosis.

Aim: We report on using Mueller matrix microscopy data, logarithmic decomposition, and polarized Monte Carlo (MC) modeling for qualitative and quantitative analysis of thin tissue cuts to extract the information on tissue microstructure that is not available with a conventional white light microscopy.

Approach: Unstained cuts of human skin equivalents were measured with a custom-built liquid-crystal-based Mueller microscope in transmission configuration. To interpret experimental data, we performed the simulations with a polarized MC algorithm for scattering anisotropic media. Several optical models of tissue (spherical scatterers within birefringent host medium, and combination of spherical and cylindrical scatterers within either isotropic or birefringent host medium) were tested.

Results: A set of rotation invariants for the logarithmic decomposition of a Mueller matrix was derived to rule out the impact of sample orientation. These invariants were calculated for both simulated and measured Mueller matrices of the dermal layer of skin equivalents. We demonstrated that only the simulations with a model combining both spherical and cylindrical scatterers within birefringent host medium reproduced the experimental trends in optical properties of the dermal layer (linear retardance, linear dichroism, and anisotropic linear depolarization) with layer thickness.

Conclusions: Our studies prove that Mueller polarimetry provides relevant information not only on a size of dominant scatterers (e.g., cell nuclei versus subwavelength organelles) but also on its shape (e.g., cells versus collagen fibers). The latter is directly related to the state of extracellular collagen matrix, which is often affected by early pathology. Hence, using polarimetric data can help to increase the accuracy of diagnosis.


Asunto(s)
Microscopía de Polarización/instrumentación , Imagen Óptica/métodos , Refractometría/métodos , Piel/diagnóstico por imagen , Humanos , Método de Montecarlo , Fenómenos Ópticos , Fantasmas de Imagen , Dispersión de Radiación
18.
Burns ; 46(4): 918-927, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31653329

RESUMEN

BACKGROUND: Bacterial nanocellulose (BNC) is considered a promising carrier for various substances and novel approaches using BNC in combination with antiseptics are well documented. However, the difference in the molecular weight of these molecules influences their uptake by and release from BNC. Analysing the diffusion of standard molecules with different weight, e.g. dextrans, offers the possibility to investigate the mobility of various molecules. We aimed to test the use of BNC regarding uptake and release of different standard molecules as well as two commercially available antiseptics for possible applications in future wound dressings. MATERIAL AND METHODS: Diffusion profiles, uptake and release of three FITC-dextran molecules differing in weight as well as octenidine (Octenisept®) and povidone-iodine (Betaisodona®)-based antiseptics were tested with BNC-based wound dressings. Furthermore, the antiseptic efficacy of BNC in combination with antiseptics against Staphylococcus aureus was tested. RESULTS: Uptake and release capacity for FITC-dextran molecules showed a molecular weight-dependent mobility from BNC into an agarose gel. The loading capacity of BNC was also inversely proportional to the molecular weight of the antiseptics. The release test for octenidine showed a sustained and prolonged delivery into a solid matrix, whereas povidone-iodine was released faster. Both antiseptic solutions combined with BNC showed a good dose-dependent efficacy against S. aureus. CONCLUSION: Results obtained from the mobility of FITC-dextran molecules in the BNC matrix could open possible applications for the combination of BNC with other molecules for medical applications. Combination of both tested antiseptics with BNC showed to be an efficient approach to control bacterial infections.


Asunto(s)
Antiinfecciosos Locales/metabolismo , Vendajes , Quemaduras/terapia , Celulosa/metabolismo , Povidona Yodada/metabolismo , Piridinas/metabolismo , Infección de Heridas/prevención & control , Antiinfecciosos Locales/administración & dosificación , Dextranos/metabolismo , Portadores de Fármacos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Iminas , Peso Molecular , Nanoestructuras , Povidona Yodada/administración & dosificación , Piridinas/administración & dosificación , Heridas y Lesiones/terapia
19.
Ann Rheum Dis ; 78(12): 1686-1692, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31540936

RESUMEN

OBJECTIVES: Fibrosis is a complex pathophysiological process involving interplay between multiple cell types. Experimental modelling of fibrosis is essential for the understanding of its pathogenesis and for testing of putative antifibrotic drugs. However, most current models employ either phylogenetically distant species or rely on human cells cultured in an artificial environment. Here we evaluated the potential of vascularised in vitro human skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs. METHODS: Skin equivalents were assembled on a three-dimensional extracellular matrix by sequential seeding of endothelial cells, fibroblasts and keratinocytes. Fibrotic transformation on exposure to transforming growth factor-ß (TGFß) and response to treatment with nintedanib as an established antifibrotic agent were evaluated by quantitative polymerase chain reaction (qPCR), capillary Western immunoassay, immunostaining and histology. RESULTS: Skin equivalents perfused at a physiological pressure formed a mature, polarised epidermis, a stratified dermis and a functional vessel system. Exposure of these models to TGFß recapitulated key features of SSc skin with activation of TGFß pathways, fibroblast to myofibroblast transition, increased release of collagen and excessive deposition of extracellular matrix. Treatment with the antifibrotic agent nintedanib ameliorated this fibrotic transformation. CONCLUSION: Our data provide evidence that vascularised skin equivalents can replicate key features of fibrotic skin and may serve as a platform for evaluation of antifibrotic drugs in a pathophysiologically relevant human setting.


Asunto(s)
Indoles/uso terapéutico , Enfermedades de la Piel/tratamiento farmacológico , Piel/patología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Enfermedades de la Piel/patología
20.
Ann Clin Transl Neurol ; 6(9): 1797-1806, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31464071

RESUMEN

OBJECTIVE: To establish individually expandable primary fibroblast and keratinocyte cultures from 3-mm skin punch biopsies for patient-derived in vitro skin models to investigate of small fiber pathology. METHODS: We obtained 6-mm skin punch biopsies from the calf of two patients with small fiber neuropathy (SFN) and two healthy controls. One half (3 mm) was used for diagnostic intraepidermal nerve fiber density (IENFD). From the second half, we isolated and cultured fibroblasts and keratinocytes. Cells were used to generate patient-derived full-thickness three-dimensional (3D) skin models containing a dermal and epidermal component. Cells and skin models were characterized morphologically, immunocyto- and -histochemically (vimentin, cytokeratin (CK)-10, CK 14, ki67, collagen1, and procollagen), and by electrical impedance. RESULTS: Distal IENFD was reduced in the SFN patients (2 fibers/mm each), while IENFD was normal in the controls (8 fibers/mm, 7 fibers/mm). Two-dimensional (2D) cultured skin cells showed normal morphology, adequate viability, and proliferation, and expressed cell-specific markers without relevant difference between SFN patient and healthy control. Using 2D cultured fibroblasts and keratinocytes, we obtained subject-derived 3D skin models. Morphology of the 3D model was analogous to the respective skin biopsy specimens. Both, the dermal and the epidermal layer carried cell-specific markers and showed a homogenous expression of extracellular matrix proteins. INTERPRETATION: Our protocol allows the generation of disease-specific 2D and 3D skin models, which can be used to investigate the cross-talk between skin cells and sensory neurons in small fiber pathology.


Asunto(s)
Fibroblastos/patología , Queratinocitos/patología , Fibras Nerviosas/patología , Piel/patología , Neuropatía de Fibras Pequeñas/patología , Adulto , Anciano , Células Cultivadas , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Piel/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...